Quantum mechanics and partial differential equations
نویسندگان
چکیده
منابع مشابه
APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS IN SNOW MECHANICS
In the present work, failure of a snow slab is analyzed by accounting Normal mode criteria. The analysis has been extended to include residual stress into the model (in addition to body forces). Intensity of crack energy release rate, and displacement components have been derived and their values have been estimated. The obtained results have been compared with the existing snow slab failure mo...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Quantum Resonances and Partial Differential Equations
Resonances, or scattering poles, are complex numbers which mathematically describe meta-stable states: the real part of a resonance gives the rest energy, and its imaginary part, the rate of decay of a meta-stable state. This description emphasizes the quantum mechanical aspects of this concept but similar models appear in many branches of physics, chemistry and mathematics, from molecular dyna...
متن کاملPreconditioning and Partial Differential Equations
The purpose of this article is to explain how some apparently simple problems from numerical linear algebra are in fact extremely difficult, so that we cannot hope to solve them effectively in general. However, if we build and analyze algorithms to solve them in special cases of interest for the numerical analysis of partial differential equations, we find that the theory needed to validate the...
متن کاملPartial Differential Equations Midterm
1), find the explicit fundamental solution to the heat equation ∆u + b · ∇u − u t = 0 in R n × (0, ∞). (1) Letting G be what you find, show u 0 (x) = lim t→0 + R n G(x, t; y, 0)u 0 (y) dy, (2) when u 0 is bounded and continuous on R n. Taking the Fourier transform (with respect to x) of the equation gives −|ξ| 2 ˆ u + ib · ξ ˆ u − ˆ u t = 0 − |ξ| 2 + ib · ξ ˆ u = ˆ u t =⇒û = ce −(|ξ| 2 +ib·ξ)t ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1980
ISSN: 0022-1236
DOI: 10.1016/0022-1236(80)90064-6